
Some Iterations Over Recursion

Michael Tiefenbacher

Agenda

 Introduction and Motivation

Common Table Expressions

Recursion
 Simple Example

 Structure

 Further Examples

 Debugging

 Alternative Syntax

Appendix

Introduction & Motivation

Recursion is a problem-solving strategy

A function, which references itself in its definition

3

Source: Henrik Loeser Blog
https://blog.4loeser.net/2018/04/db2-cte-and-connect-by-two-kinds-of.html

Kudos for Henrik who created the presentation with me

Use Cases

Test data generation

Step through hierarchies of undefined depth
 Organizational hierarchies

 Referential Integrity hierarchy

 View hierarchy

Route calculation

Bill of materials

Mathematical calculations
 Faculty

Solving a Sudoku

4

Common Table Expression (CTE)

Common Tables Expression is part of the SQL standard (ANSI SQL99)

Generates a temporary table within a SQL statement

Can be used to
 Improve readability of statements

 Reuse of parts of a statement

 Implement recursion

Multiple CTEs can be defined within a single SQL statement when
separated with a comma (“,”)
 WITH keyword is only necessary at the beginning

5

WITH <cte-table name> [(<column-list>)] AS
(<full-select>)

Common Table Expression (CTE) – Sample

6

with temp (date) as (

select date('29.06.2018') as date

from sysibm.sysdummy1

)

select * from temp

Optional, if all columns
are named

with t1 (date) as (

select …

)

, t2 as (

select …

)

select * from t1, t2

Multiple CTEs can be
used – separated by

comma

Recursion – Simple Example

Generation of Time Series (Dates)

7

with temp (date) as (

select date('29.06.2018') as date

from sysibm.sysdummy1

union all

select date + 1 day

from temp

where date < date('19.10.2018')

)

select * from temp

…

Structure of a Recursive Query

8

Common Table Expression (CTE)

SELECT for First Row

UNION ALL

SELECT for Subsequent Rows

Add Counter Column

Increase Counter Column

Provide Stop Condition

SELECT CTE

WITH cte_recursion (…) AS (

SELECT …

, 1 as counter

FROM …

UNION ALL

SELECT …

FROM cte_recursion,…

WHERE …

AND counter < 5)

select * from cte_recursion

Introduce counter

Heart of recursion

Use counter to limit loops

Potential Problems

DISTINCT is not allowed
 SQL0342N The common table expression "<name>" cannot use SELECT DISTINCT

and must use UNION ALL because it is recursive.

Columns need to be named in CTE (only for recursive queries)
 SQL0343N The column names are required for the recursive common table

expression "<name>".

Joins in recursive CTE need the old syntax and further restrictions
 SQL0345N The fullselect of the recursive common table expression "<name>" must

be the UNION of two or more fullselects and cannot include column functions,
GROUP BY clause, HAVING clause, ORDER BY clause, or an explicit join
including an ON clause.

9

Limitation does not exist in Db2 for z/OS

Recursion – Hierarchies

Hierarchies of Departments

 From Db2 SAMPLE database

10

Hierarchies Example

11

WITH temp(DEPTNO, DEPTNAME, ADMRDEPT, LEVEL) as (
SELECT DEPTNO, DEPTNAME, ADMRDEPT, 0 as LEVEL
FROM DEPARTMENT
WHERE DEPTNO = 'D21'
UNION ALL
SELECT d.DEPTNO, d.DEPTNAME, d.ADMRDEPT, t.LEVEL + 1 as LEVEL
FROM temp t,

DEPARTMENT d
WHERE t.ADMRDEPT = d.DEPTNO
AND t.LEVEL < 5
AND t.DEPTNO <> t.ADMRDEPT

)
SELECT * FROM temp

Structure – Color Coding

12

WITH temp(DEPTNO, DEPTNAME, ADMRDEPT, LEVEL) as (
SELECT DEPTNO, DEPTNAME, ADMRDEPT, 0 as LEVEL
FROM DEPARTMENT
WHERE DEPTNO = 'D21'
UNION ALL
SELECT d.DEPTNO, d.DEPTNAME, d.ADMRDEPT, t.LEVEL + 1 as LEVEL
FROM temp t,

DEPARTMENT d
WHERE t.ADMRDEPT = d.DEPTNO
AND t.LEVEL < 5
AND t.DEPTNO <> t.ADMRDEPT

)
SELECT * FROM temp

Common Table Expression (CTE)

SELECT for first Row

UNION ALL

SELECT for subsequent Rows

Add Counter Column

Increase Counter Column

Provide Stop Condition

SELECT CTE

Recursion – View Hierarchies Example

13

with temp (tabname, bname, level) as (
SELECT tabname, bname, 0 as level

FROM SYSCAT.TABDEP
WHERE tabname = 'V_LEVEL5'
UNION ALL

SELECT td.tabname, td.bname, t.level + 1 as level
FROM temp t,

SYSCAT.TABDEP td
WHERE t.bname = td.tabname
AND t.level < 9

)
SELECT * FROM temp

Top-Down

Recursion – View Hierarchies Example

14

with temp (tabname, bname, level) as (
SELECT tabname, bname, 0 as level

FROM SYSCAT.TABDEP
WHERE bname = 'EMPLOYEE'
UNION ALL

SELECT td.tabname, td.bname, t.level + 1 as level
FROM temp t,

SYSCAT.TABDEP td
WHERE td.bname = t.tabname
AND t.level < 9

)
SELECT * FROM temp

Bottom-Up

Template

15

with cte (<columnlist>, <joincolumn>, level) as (
SELECT <columnlist>, <joincolumn>, 0 as level

FROM <basetable>
WHERE <start-condition>
UNION ALL

SELECT b.<columnlist>, b.<joincolumn>
, c.level + 1 as level

FROM cte c,
<basetable> b

WHERE b.<joincolumn> = c.colname
AND c.level < 9

)
SELECT * FROM cte

Debugging Options for Recursive Queries

How can a recursive statement be debugged?
 First part of the UNION ALL can be executed by its own

 Comment UNION ALL and SELECT first part of the CTE with
the second one

 Use a simple SQL to SELECT the complete CTE

16

Debugging Options for Recursive Queries

17

with temp (tabname, bname, level) as (

SELECT tabname, bname, 0 as level
FROM SYSCAT.TABDEP
WHERE bname = 'EMPLOYEE'

UNION ALL
SELECT td.tabname, td.bname, t.level + 1 as level
FROM temp t,

SYSCAT.TABDEP td
WHERE td.bname = t.tabname
AND t.level < 9

)
SELECT * FROM temp

Level1

Level2

) --

Alternative Syntax

I would like to hear a recursion joke!

Oh, I know a good one!

Let me start off: I would like to hear…

Alternative Syntax for Recursion

Alternative Syntax with CONNECT BY

 Oracle style

 Prerequisite: DB2_COMPATIBILITY_VECTOR = 08
 Instance restart is sufficient

Note
 This is not only a different syntax but also the internal processing is different

 Depth first

 Limited to a depth of 64 levels of recursion
 SQL20450N Recursion limit exceeded within a hierarchical query.

19

Oracle Syntax Example

20

SELECT date('20.04.2018') + level days as dt
FROM sysibm.sysdummy1

CONNECT BY date('20.04.2018') + level days
<= date('29.05.2018')

Comparison of the Syntax Alternatives

21

Db2 Syntax Oracle Syntax

Recursion – Example Flight Route

Find a route from A to B with a certain number of hops

 i.e. Frankfurt (FRA) to Philadelphia (PHL)

22

7184 67663 6162

Flight Route Solution

23

with temp (source_airport, destination_airport, airline_id, hops, route) as (

SELECT source_airport, destination_airport, airline_id, 0 as hops,
cast(source_airport || '->' || destination_airport as varchar(500)) as route

FROM airline_routes ar

WHERE source_airport = 'FRA'

AND exists (SELECT 1 FROM airline_routes WHERE destination_airport = 'PHL'
AND airline_id = ar.airline_id)

UNION ALL

SELECT ar.source_airport, ar.destination_airport, ar.airline_id, t.hops + 1 as hops

, cast(route || '->' || ar.destination_airport as varchar(500)) as route

FROM temp t, airline_routes ar

WHERE ar.source_airport = t.destination_airport

AND ar.airline_id = t.airline_id

AND LOCATE_IN_STRING(t.route, ar.destination_airport) = 0

AND ar.source_airport <> 'PHL'

AND t.hops < 3)

SELECT * FROM temp WHERE destination_airport = 'PHL'

Common Table Expression (CTE)

SELECT for first Row

UNION ALL

SELECT for subsequent Rows

Add Counter Column

Increase Counter Column

Provide Stop Condition

SELECT CTE

Flight Route – Details

Concatenation of the airports on the route
cast(source_airport || '->' || destination_airport as varchar(500)) as route

Only airlines that approach the destination airport
and exists (SELECT 1 FROM airline_routes WHERE destination_airport = 'PHL'

AND airline_id = ar.airline_id)

The next destination must not be part of the current route (avoid loops)
and LOCATE_IN_STRING(t.route, ar.destination_airport) = 0

Stop if PHL is the origin or more than three hops are involved
and ar.source_airport <> 'PHL' and t.hops < 3

24

Flight Route – Result

25

Nested XML test data (1|2)

26

with mytable(mydoc,depth,fanout,level) as

(SELECT xmlelement(name "first",'Hello recursive world'),5,10

, 1 as level
FROM sysibm.sysdummy1

UNION ALL

SELECT xmlelement(name "in-between",
xmlquery('<a>{for $i in (1 to $FANOUT) return

{$MYDOC}}')),
depth,fanout, level+1 as level

FROM mytable WHERE level<depth)

SELECT xmlelement(name "root",mydoc) as doc

FROM mytable

WHERE level = depth

Common Table Expression (CTE)

SELECT for first Row

UNION ALL

SELECT for subsequent Rows

Add Counter Column

Increase Counter Column

Provide Stop Condition

SELECT CTE

Nested XML test data (2|2)

<?xml version="1.0" encoding="UTF-16" ?><root><in-between><a><in-
between><a><in-between><a><in-between><a><first>Hello
recursive world</first><first>Hello recursive
world</first><first>Hello recursive
world</first><first>Hello recursive world</first> … and
so on

27

Solving Sudokus

Sudoku
 Values 1 to 9 only once per row

and per column

 Values 1 to 9 ony once per square

Input needs to be provided to SQL
 As a unformatted string

 “.“ for empty fields

28

Sudoku – Solution Part I

The input string is provided in a CTE

29

WITH input(sud) AS (
values ('..94......5468........7..251...5...67..348.....
..6.893.1...2....8.5....9......368')

Sudoku – Solution Part II

Build a list with possible values (1-9)

 Recursive query

 Value as number and as string (as the input is a string)

Alternative
30

with digits(z, lp) AS (
SELECT '1' as z, 1 as lp FROM sysibm.sysdummy1
UNION ALL
SELECT CAST(lp + 1 AS varchar(1)), lp + 1
FROM digits WHERE lp < 9

)
select * from digits

VALUES ('1',1),('2',2),('3',3),('4',4),('5',5)
,('6',6),('7',7),('8',8),('9',9)

Sudoku – Solution Part III

31

, x(s, ind) AS (
SELECT sud, instr(sud, '.') FROM input
UNION ALL
SELECT

substr(s, 1, ind-1) || z || substr(s, ind+1),
instr(substr(s, 1, ind-1) || z || substr(s, ind+1), '.')
FROM x, digits AS z

WHERE ind>0
AND NOT EXISTS (

SELECT 1
FROM digits AS lp
WHERE z.z = substr(s, ((ind-1)/9)*9 + lp, 1)

OR z.z = substr(s, ((ind-1)%9) + (lp-1)*9 + 1, 1)
OR z.z = substr(s, (((ind-1)/3) % 3) * 3

+ ((ind-1)/27) * 27 + lp + ((lp-1) / 3) * 6, 1)
)

)
SELECT s FROM x WHERE ind=0;

Next empty field

Maths for same row Maths for same column

Clever maths for same square

Sudoku – Result

Result is also returned as a string

32

379 425 681
254 681 937
861 973 425

138 259 746
796 348 152
542 167 893

613 892 574
487 536 219
925 714 368

reformatted

Further Information I

Queries and other materials:
 https://github.com/data-henrik/sql-recursion

Blog by Henrik Loeser
 https://blog.4loeser.net/2018/04/db2-cte-and-connect-by-two-kinds-of.html

 IDUG Session of previous conferences
 Utilizing DB2 V8 Recursive SQL on all Plattforms

 Daniel Luksetich – IDUG EMEA 2005 – F13

 Parlez-Vous Klingon? Recursion SQL for Generating Test Data
 Alexander Kopac – IDUG 2018 – F15

33

Further Information II

 Hierarchical Queries with DB2 Connect By (iSeries)
https://developer.ibm.com/articles/i-db2connectby/

 Migrating Recursive SQL from Oracle to DB2 UDB
https://www.ibm.com/developerworks/data/library/techarticle/0307steinbach/0307steinbach.html

 SQL Cookbook by Graeme Birchall
http://db2-sql-cookbook.org/

 KnowledgeCenter
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.apdv.porting.doc/doc/r0052877.html

34

Michael Tiefenbacher
ids-System GmbH

m.tiefenbacher@ids-system.de
Twitter: @globomike

